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NOMENCLATURE

dBOD length of afterbody

dlvL distance from leading edge of airfoil to initial value line

doB distance from tail of body to outflow boundary

dTL distance from trailing edge of airfoil to tail of afterbody

JMAX number of grid points on stagnation line

K MX number of stacked surfaces, radial direction

NI number of grid intervals on airfoil between leading edge and
point K

N2 number of grid intervals on airfoil between point K and trailing

edge

N3 number of grid intervals on afterbody between airfoil trailing
edge and end of body

N4 number of grid intervals between tail of body and outflow
boundary

SXO grid clustering parameter at airfoil leading edge

SX1 grid clustering parameter at point K on Segment 1

SX2 grid clustering parameter at airfoil trailing edge

SX3 grid clustering parameter at tail of body
b4

SYO grid clustering parameter on stagnation line at airfoil leading
edge

SYl grid clustering parameter on stagnation line at initial value
surface

SZO grid clustering parameter on afterbody surface in radial
direction

All other symbols are defined in the text.

Si
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1. Introduction

Algebraic grid generation methods for three-dimensional (3-D) flow

problems have the advantage over their differential equation counterparts in

speed and ability to handle high aspect ratio cells without difficulty.

Where the algebraic methods are sometimes at a disadvantage is in treating

a wide variety of boundary shapes with a single code.

Since 1979 grids about wing-body configurations have been successfully

generated by several algebraic approaches. Eriksson [i has generated a

single-block nonorthogonal 3-D grid using transfinite interpolation where

geometric data is specified only on the boundaries. Since no internal

* . surfaces are specified, grid quality is controlled, especially near a

surface, by incorporating out-of-surface parametric derivatives. Smith [2]

uses the patched grid approach where the domain is divided into regions

with boundaries of a simpler character than the overall region. On the

interior of each six-sided sub-region transfinite interpolation is used to

generate the grid. His treatment extends only to the wing tips which limits

its usefulness. A third and quite different approach has been taken by

Caughey & Jameson [3]. Their technique generates a boundary-conforming

coordinate system by a sequence of conformal and shearing transformations

to yield a nearly orthogonal compu-ational domain. The grid is then

.enerated by simple linear interpolation. Shmilovich & Caughey [4] have

recently extended this technique to include a tail surface. The Caughey-

Jameson procedure was developed for use with the 3-0 transonic FLO codes.

ne of the maior difficulties in algebraic grid generation is preventing

cor ier singularities on the boundaries from propagating into the grid. Any

interpolation method will propagate such singularities into the inttrior.

i"

. . ..-

. .
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Differential equation grid generation schemes suffer no such problem because

of the diffusive action of the elliptic operator. Corner singularities

are always present in 3-D configurations at wing/fin trailing edges and

tail points on pointed bodies. A method for removing these singularities

in algebraic grid generation has been developed by Vinokur & Lombard [5] for

2-D geometries. Their method consists of patching a conformal hinge point

transformation in a small region near the corner to a grid in the remainder

of the domain generated by transfinite interpolation. They successfully

applied this method in generating a patched grid in a domain consisting of

a backward facing step at the end of a nozzle exhausting into a cylindrical

diffuser.

The problem treated in this report is the generation of a surface fitted

grid in the stern region of an undersea vehicle, specifically an axisymmetric

pointed afterbody with four identical, symmetric, constant chord fins. In

many respects this problem is similar to the wing-fuselage problem. The

desired grid is to be used for either inviscid or viscid incompressible flow

calculations and hence must have proper clustering ability to resolve

regions of high flow gradients. An algebraic approach is used which is an

outgrowth of earlier 3-D grid generation work on a fin-cylinder configuration

[6].

The algebraic method adopted here was ori !inallv inspired by the work of

Caiu hey & ,ameqon in unwrapping a geometry as much as possible to produce a

nnrallelpiped with nearly straight houndaries. This procedure is ot the

stickin, type where a 3-D grid is produced by a sequence of 2-D grid

.f-neration operations. In the present method s;tacked tubu ilar surfaces ot

-Arcuoar cross-section are first determined and then a C-type grid generateo
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on each surface. In the process of generating these surfaces as well as

in unwrapping the airfoil, corner singularities are removed by application

- of a hinge point transformation to the entire boundary. The present

approach thus differs from that of Vinokur & Lombard in being global rather

than local in the use of the hinge point transformation. The result is a

smooth boundary with a slowly varying tangent. A grid which is orthogonal

at all boundaries is then generated on the interior by transfinite

interpolation. By using a sequence of one-dimensional stretching functions

-. in physical space, precise control is maintained over the clustering at

all boundaries.

- .

S;.

K .
*-%

.[-.. . . . . . . . ,
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2. Analysis

2.1 Geometry of Computational Domain

We start by defining the geometry for which a surface-fitted grid is to

be generated.

(1) The afterbody is of circular cross-section and has a smooth

but otherwise arbitrary meridian profile that closes at the

tail point.

(2) Four identical fins of constant unit chord and infinite

span, consisting of symmetric airfoil sections, are

mounted 90 degrees apart with their chord planes passing

through the afterbody centerline. The trailing edges of

the fins are located upstream of the tail point a distance

dTL -

(3) The computational domain consists of the region interior to

an outer cylinder of radius rTIp and exterior to the

afterbody, bounded upstream and downstream by planes normal

*i to the afterbody centerline (the initial value and outflow

planes).

A schematic of the geometry and computational domain is shown in Fig. I

and a head-on view showing the coordinate system in the crossflow plane

appears in Fig. 2. Since the fins are identical and equally spaced there

are four planes of symmetry at 6 = 0, n/4, n/2 and 3w/4. Thus, only the

section - n/4 4 0 4 0 is considered in generating a grid and in the flowfield

calculation.
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2.2 Grid Stacking Procedure

The simplest grid stacking scheme, such as that in Ref. 3, makes use of

a shearing transformation to distribute a sequence of two-dimensionally

produced grids in the third spatial direction. Unfortunately the shearing

transformation causes surface corner discontinuities to propagate into

the grid. In the present case of a pointed tail body, Fig. 3 illustrates

the situation that would exist in the meridian plane if a shearing

transformation were used. Along the vertical line through the tail point,

x = xT, lines of constant n have discontinuous slopes.

What is needed is a transformation to produce n = constant lines that

does not propagate corner discontinuities. The hinge point (power law)

conformal transformation has this desired property. At the tail point

(corner discontinuity) we write

w (1)

where the real axis is aligned with the axis of symmetry, and

z = x + iy , (2)

w = u + iv , (3)

_ _ . (4)

Tr T

The tail angle aT is defined in the meridian plane schematic given in Fig. 4.

Equation (1) maps the sector 0 4 0 n - 6T above the real axis onto the

upper half plane. If Eq. (1) is applied to the entire bounding curve in

the meridian plane, A-B-C-D-E-A, the corner at the tail point H is

i. .. . . , , . . . * .

ii m' ' +" I+ I A+ m ' A m + + 
' , ' + " I " "

" + i I - *" , ' ' + , ..
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eliminated in the w (hinge) plane. Then interpolating a grid in the hinge

plane, upon transformation, will produce a smooth grid (except at B) in the

physical plane which can be used for stacking.

Before proceeding further, we present the calculational steps in going

from the z plane to the w plane and vice-versa. We start by writing z and

w in polar form,

z = re , w= pe . (5)

Then substituting Eqs. (5) into Eq. (1) and equating real and imaginary parts

gives

"-.p = rn

}l . (6)

=nO

Given (x,y), to compute (u,v) we first compute the magnitude r and angle

from

A 2 2 1/2
r= (x + y2

tan-'(Y) + ,f <0
(7)

0=, x=0

tan-() , x > 0

Next, p and are computed from Eq. (6) and finally u and v (transforming

from polar to cartesian form) from

0 .
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u = cos 1
(8)

v = p sin

Conversely, if (u,v) are given, the magnitude p and angle * are computed
from

2 2 1/2p (u + v ) 1

tan-'(v) + W u < 0
((9)

, u = 0

tan-(v) , u > 0
u

Then r and 0 are computed from the inverse of Eq. (6), viz.

A /n
r p

* (10)

n

Finally, x and y are related to r and 0 by

x r cos 0i.!l[ .(11)

y sin

The image of boundary A-B-C-D-E-A in the hinge plane is shown

schematically in Fig. 5 and has the appearance of a water spout. Segment BC

remains straight because the real axis in the z plane is coincident with

.'

.,. . . . . . . . . . . . . .
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BC. For convenience, the transformed boundary segments will be denoted t%

*oint-of-compass notation. Thus A-B-C is v (u) and E-D is v (U).
S N

To accommodate the inflow and outflow boundaries (lines A-E and C-D in

Fig. 5) as well as the leading and trailing edges of the fin, vertical lines

must remain vertical in the physical plane. This requirement acts as a

constraint on the transformation from the hinge to the physical plane.

The simplest scheme for producing a grid in the hinge plane is a shearing

transformation on the image of x = constant lines. Thus the normalized

variable r is defined as

v -v
r S V(12)

N S x=const.

At this point the distribution of r. is assumed known. Thus in the interior
3

v is given by

= vs + rj(vN - vs) (13)

where the index i is constant on x = constant lines.

Thus at point (i,j) the values of x. and v. . are known. Then (y,u)i.

are determined by iteratively solving Eq. (1) as follows: A first guess

for y is obtained by linear interpolation from

(1)-
y =Y + r(YN - YS ). (14)

i

The cycle begins by computing u from

u r cos (15)
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where r and 0 are given by Eqs. (7). Next, new values of p and *,
corresponding to the current estimate of u and the known v, are computed

from Eqs. (9). The p and 4 are then used to update r and 0 using Eqs. (10),

and finally, xC and y are given by Eqs. (11). Convergence is attained when

Ix- XcI < 10-6  (16)

Thus for each value of r : constant, a smooth curve ys(x) is determined

in the meridian plane using the above procedure. By revolving y x) about

the x-axis a tubular coordinate surface is obtained which is smooth and non-

developable (except when it is a cylinder). On each of these surfaces a

surface fitted grid is determined as though the surface were developable,

" then projected back onto the surface. This means that given (x,O), r is

determined by interpolation of the tubular meridian-plane curve rS(x) = Ys(x).

For the projection method to work properly, the foil subtended angle OF(x)

must be computed to account for the variable r x) from

S

e sin- (F (17)-'-'F rs( 7

S

where yF(X) is the airfoil semi-thickness distribution. Lagrange cubic

interpolation is used to determine r, given x, from the previously determined

values of rS.

Clustering of r = constant Lines near the body surface is needed to

resolve the viscous layer whereas further away, where flow gradients

diminish, these lines can be further apart. A one-sided stretching function

Ls therefore appropriate to determine the grid line spacing in the meridian

plane.

'.

0 .

:: ? ? .. . . :. . -. ? ... ° . ... . .. . . - ... . - .. .... - .... .. .. ,. . .. . -.. . . . . .,... -,. - . .. . . .
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Vinokur [71 has determined approximate criteria for the development of

one- and two-sided stretching functions of one variable which give a uniform

truncation error independent of the governing differential equation or

difference algorithm. He investigates several analytic functions but finds

that only tan z, where z is real or pure imaginary, satisfies all of his

criteria. These stretching functions were used in the predecessor grid

generation scheme [61 and are also used here.

Since r is already a normalized variable, its distribution is given by

_ tanhl A*[( - 1)]
r + 1 + (18)

tanh A

where is the normalized generating variable given by

N-
r

and AO is the solution of

sinh A (19)
0 AO (

and

d& (O)

dr

N- = number of intervals in r = KMAX - I
r

I...
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2.3 Grid Generation on a Tubular Surface

Overall Approach

, Grid generation in the x - e plane is accomplished in three stages. The

. first stage involves a sequence of conformal transformations to unwrap the

airfoil, symmetry lines and initial and outflow lines into a quadrilateral

with a slowly varying height. The unwrapping transformations are the basis

for producing a C-grid about the airfoil. The second stage involves

translation and rotation of coordinates about the image of the airfoil

°* trailing edge, followed by a hinge point transformation to eliminate the

corner at the trailing edge. The third stage makes use of transfinite

interpolation to determine the grid in the hinge plane that is

* ;rthogonal at all boundaries. Since the boundaries in the hinge plane are

smooth and have a slowly varying tangent, transfinite interpolation will

produce a smooth grid in which non-orthogonality in the interior is held to

a minimum. The grid in the physical plane is obtained by taking the inverse

of the sequence of transformations. Since the intermediate transformations

are conformal, the orthogonality at boundaries and grid smoothness will be

preserved in the physical plane. Spacing of grid lines is determined on

appropriate boundaries in the physical plane by use of stretching functions.

Sequence of Transformations

At this stage the coordinates of the fin (xF,3F) on a specified

* r = constant tubular surface are assumed known. The first step, in

preparation for the unwrapping transformation, is to scale the (x,e)

coordinates according to
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x = 4(x - ds) + In 2

(20)

=40

where dS is the location of the singular point in the unwrapping trans-

formation and is just inside the leading edge of the airfoil. The stretching

factor 4 is required by the unwrapping transformation so that the upper limit

on 0 will be ± if (the upper and lower symmetry planes are at 0 = ± w/4).

In Refs. 3 and 6, x is translated but not magnified whereas 0 is magnified

as above. Unequal scaling is of course not conformal so that orthogonality

* of the grid cannot be maintained at the boundaries. The resulting grid in

the x - 0 plane will be highly flattened and thus highly nonorthogonal.

On an r = constant surface the boundaries and coordinate system in the

x - 0 plane are sketched in Fig. 6. Because of symmetry, only the region

- 4 6 < 0 needs to be considered. The airfoil can be unwrapped by applying

the conformal transformation,

+ i = tn[l - cosh(E + in)] . (21)

Equation (21) maps the region below the x-axis to positive E in the band

0 ( n n n. We note that the sign of 0 in Eq. (21) follows Caughey & Jameson

131 so that a right-handed coordinate system results. In Ref. 6, the sign of

9 was negative which produced a left-handed system. Figure 7 presents a

schematic of the boundaries in the n - plane. The initial value line (IVL)

A-B-C is seen to map into a near semi-circle.

'i- ' ... .. .. . . ....... - [l "- ii " . i' .-" -'-i- -.".1 i... .* --.--- -- l-- ..i. -" -.-.... . i . i-.. ..- -'- .-"- . '
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Following Ref. 6, the corners at points A and C can be eliminated by

applying the conformal transformation,

2

+ i= + in + , (22)C+in

where C0 is defined in Fig. 7. Equation (22) has the effect of nearly

straightening out the IVL. The geometry of the boundaries in the C -

plane is shown in Fig. 8.

In Ref. 6 a shearing transformation is used to produce a grid in the

C - n plane. For airfoils with non-zero trailing edge angles this procedure

produces discontinuous metric coefficients across the line C = CF. To

eliminate the effect of the corner at the trailing edge (point F) a procedure

similar to the generation of the smooth curves in the meridian plane is used.

The n - coordinates are first translated and rotated about point F according

to

= (CF - Z)cos F + F - )sin XF

(23)

Y=- F-i)sin XF + F - n)cos XF

where the positive x axis points toward point E, the airfoil leading edge,

and AF is the trailing edge angle in the C -Z plane. The translated and

rotated - n boundaries are sketched in Fig. 9.

-. . ....- ................. ........ •.. ............-..........................
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The final step in producing a smooth boundary is to apply a hinge point

transformation to (x,y) to eliminate the corner at point F. Equation (1)

applies provided z = x + iy and

n =(24)-r AX '

where

AX =X X . (25)

The resulting boundary in the hinge plane is sketched in Fig. 10. Once a

grid in the hinge plane is produced by transfinite interpolation, the

transformation sequence is reversed to obtain the grid in the x - e plane.

The FORTRAN coding is written in terms of real variables which involves

determining the real and imaginary parts of the conformal transformations

as well as their inverses. These relations are given in the appendix.

, Corner Point Projection on Airfoil

Part of the present grid generation strategy is to force one of the

coordinate lines normal to the airfoil to pass through point C, the corner

point. This point on the airfoil is denoted by letter K -- see Fig. 10.

I ALSuch a line provides a natural division between those lines intersecting

-.- the airfoil from the IVL, B-C, and the lower symmetry line, C-J.

An effective method of locating point K that prevents reflexes on the

- connecting segment C-K is to construct a circular arc between C and K which

is normal to both boundaries. Under this assumption the relation between

the coordinates at C and K is found to be

i C  - u K +C--'"= tan[ 3- (* + *K)] , (2h)

v - v C C 

K .. .°,

**.*- -
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where

tan - du (27)

Supplementing Eq. (26) by the equation for the airfoil imagre, vs(u), gives

two equations for the two unknowns uK and v K

Equation (26), together with the airfoil image equation, can be solved

iteratively by the following formula, derivable from Newton's method:

(n+l) (n) (n)
uK =uK + AuK (28)

where

)  u + (v- v )tan[' + (n)
Au (n29K) K

tan #K tanL 2  C + K ) ]

The right-hand-side of Eq. (29) is evaluated from values at point K at the

(in) (in)
nth iteration level. In the determination of vK and tan (n, Lagrange

cubic interpolation is used. Convergence of uK is quite rapid, requiring

usually about four or five iterations to reach jAuKI i06. Once (u,v)K

r-n are found by the inverse transformation of the mapping

sequence.

Stretchlng, Functions

In the x - e plane the two-sided stretching function of Vinoktir i used

to -enerite the arid point distributions on the ;tagnation streamline 1-E

ind the airfoiL-wake centerline E-K-F-1. For segment 4-E a single stretching'

functiorn is uised whereas for sediment E-K-F-I, a sequence of three stretchine

inctions j5 required.

4- : .., .: . .. . -. . -. . . . . ..-v , - ... .- .. .- . -. .

_. ,,-- :. :Y .. . .. . .. .: _.-.-_ : ._ :, , '2 '..i~ :- -.i. -. .-i - - . . i:*.*.i . - ..*:-
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The two-sided stretching function for the normalized variable t is

given by

tanh(PA)t = A sinh A + (I - A cosh A )tanh( A ) ' (30)

where is the normalized generating variable of constant step size, Ap is

the solution of the transcendental equation

B = sinh A (31)

and

A = (S0/S 1)1
/ 2  (32)

B = (SOS1)1/2 (33)

and S and S1 are dimensionless slopes defined as
0 1

dl (0)
dt

So d
d (1)

which control the clustering at t = 0 and t = 1.

rP The reason for using two-sided stretching functions on segments E-K, K-F

and F-I is to provide clustering at all segment end points. It is needed at

point E- because ot the rapid drop in pressure downstream of the stagnation

point, at point K to provide a more nearly uniform grid distribution on the

inflow line and at points F and I to resolve the flow at the airfoil trailini

e" 'e atid tail of the bodv respectivly. Since the arc length step size at

points K and F should be continuous, not all of the parameters (S0 S,) are

['..
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independent. If (SoS 1) are specified on E-K and S1 is specified on K-F,

then S on these latter segments must be calculated to satisfy continuity of0

step size at the segment junctions. The relation is

= • SKF. NE
(so) =(sj) sF NEK 9(34)
SKF SEK sEK NKF

where s denotes arc length of the segment and N the number of intervals on

the segment. A similar expression holds on segment F-I.

Transfinite Interpolation

Normalized pseudo-computational variables and n are defined such that

the interior of the quadrilateral in Fig. 10 in the u - v plane transforms

to the interior of the unit square in the - 1 plane. The transformation

from the computational domain to the hinge-plane domain is given in terms of

the position vector r:

= 9 (35)

where 0 4 E 4 1, 0 4 4 1.

Specifying the distribution of the position vector r and its normal

derivatives on the four boundaries in the - ^ plane is equivalent to

defining the grid on the boundaries in the hinge plane and ultimately,

the x - 0 plane.

9 9 . . - .
-
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The transfinite interpolation method used here is the extension of

Eriksson [1] as specialized by Vinokur and Lombard [5]. The relation for

++

r, using point-of-compass notation for the boundaries, is

r + + E(^ +r (^H;

"S N

+ E()[r(f ) - rE(;) -F rNWF() - + G(G) - +rN H(;)]

SW NW

+ F( )[rE(l) - rsEE(l) - rNEF(;) - r G(; ) - r H(;)]
- SiSE E)N

E

+ G()[IrW(r)- sE(;) - F(n) -, G(n) -+,, H(;)]
W SW NW 1 SW MW

+ H(&)[rE () - sE E(n) - rNg F(r) - SE G(rI) - NEH(;)]

(36)

where E, F, G and H are cubic blending functions given by

F(u) = u2 (3 - 2u)

G(u) = u(I -U)

(37)

2
H(u) = u (u - 1)

E(u) = I - F(u)

K.

f' ... . . . -. .. .. .. - . .. . .-- .. ..., .* .* .C. . ..'. . . -. ,.. . . . ,.. . . . . . .. . . .
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Equation (36) thus provides a smooth blending on the interior of the given

distribution of grid points and normal derivatives on the boundaries. A

typical grid in the hinge plane obtained by transfinite interpolation is

.*'- shown in Fig. 11.

- - The evaluation of the various derivatives on the boundaries in Eq. (36)

" follows the prescription given by Vinokur & Lombard and is presented in

""-- detail in Appendix II.

Addon Grid

The foregoing procedure produces a C-grid in the x - 0 plane in the

* region upstream of the tail line I-J. Because = constant lines in the

upstream grid are normal to I-J (and l-J is straight as well as normal to the

wake centerline), a downstream grid can easily be created which has continuity

through first derivatives across 1-J. The addon grid which has these

characteristics is a Cartesian grid with the same 0 distribution at 1-J as

the upstream grid. Distributing grid points on the x-direction downstream

of 1-J is accomplished by a one-sided Vinokur stretching function with the

parameter SO determined by requiring continuity of Ax on either side of 1-J.

2.4 Computational Grid

If indices i, j and k denote the coordinates , p and r, then the

computational coordinates x, v and z may be conveniently defined as

0 X= i- i iimax

Y I j max (38)

SZ =k- I I k k
max
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- The advantage of this system is that the computational step size in the three

directions is unity which simplifies the metric coefficient calculations.

6°

S.

_U21

p.

0I



-t i - - " " a " -" ° - X°- -'Z " - " "- -. " * -'..--' -i . - . . -. - - -. . + ~ :

26 12 April 1985
GHH:1hz

3. Results and Discussion

The afterbody-fin grid generation code is called TAILGRID and consists of

- +about 1600 FORTRAN statements. It is written in double precision arithmetric

*and computes in terms of real variables only. To date all grid generation

has been done on a VAX 11/782 computer with CPU per grid point found to be

about 7 x 10 sec. Thus computing a surface containing 1500 points requires

*approximately 10 sec.

The airfoil family chosen for testing the grid generation procedure was

the NACA symmetric four digit series. The equation for this profile is

YF = - 5T(O.2969 /x - 0.1281x - 0.3516x 2 + 0.2843x3 
- 0.1015x4) , (39)

where T is the maximum thickness expressed as a fraction of the chord. In

the original equation for YF' see Eq. (6.2) of Ref. 8, the coefficient of x

is given as 0.12600 which causes the airfoil to have a finite trailing edge

thickness (YTE =0.0021). Since the grid generation procedure requires zero

trailing edge thickness, the coefficient of x was modified as shown in

Eq. (39). Interpolation is used liberally on the airfoil in the grid

generation process; thus an accurate definition of yF versus x is a

necessity. Usually 100 points on the airfoil are computed for this purpose

with clustering at the leading edge.

A number of 2-D test cases in the x - 8 plane were run to determine

the effect of certain input parameters on grid quality. These cases all

consisted of an NACA 0012 airfoil at a cylindrical radius of 0.5. The

common parameters for the five cases are given in Table I while the

parameters that vary from case to case are presented in Table 2.

.-

. .. *



27 12 April 1985
GHH:lhz

NI N2 JMAX DOB SXO SX2 SX3 SYl

10 20 31 1.0 5.0 2.0 1.1 1.0

Table 1. Common Parameters in 2-D Test Cases.

Case DIVL SXI SYO

1 0.5 1.0 2.0

2 0.5 3.0 2.0

3 0.5 3.0 50.0

4 1.0 3.0 50.0

5 1.5 3.0 50.0

Table 2. Variable Parameters in 2-D Test Cases.

* In all of the above cases, the point distributions on inflow-lower symmetry

line and outflow boundaries are determined as described in the previous section.

In this 2-D example only the grid point distribution downstream of the trailing

* edge is given by a geometric progression.

Case I and 2, shown in Figs. 12 and 13, are the same except that clustering

is used about point K in case 2 and none is used in case 1. The orthogonality

constraint is seen to produce considerable spreading of constant lines

V;' ; Yi" ~ .,-.,; *. " . .
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near the corner (point C). Without clustering a poor boundary point

distribution on the IVL is obtained whereas with clustering the distribution

close to point C is improved.

Case 3, presented in Fig. 14, is similar to case 2 except that the

clustering parameter on the stagnation line at the airfoil leading edge is

25 times larger. The result is a much more dense grid near the airfoil

surface which would be useful for calculation of viscous flow at high

Reynolds number. In both cases the number of points on the stag". ion line

is the same -- 31.

Cases 4 and 5 (see Figs. 15 and 16) show what happens to the grid when

dlV L is increased, all other parameters being the same as in case 3.

Point K is seen to migrate toward the airfoil leading edge as dlv L increases

which results in a squeezing of grid lines between the leading edge and

point K. In terms of grid quality the optimum value of dlvL appears to lie

between 0.5 and 1.0 so that line C-K remains nearly straight. One way of

moving the IVL further upstream without sacrificing grid quality would be to

add a cartesian grid upstream of the flattened C-grid with the same e-spacing

as on line B-C (the IVL for the C-grid).

For a 3-D test problem the afterbody meridian profile was represented

by the following analytic function:

rb(u) drb F(u) - db tan 0rG( , (40)

where
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x
bod

d = afterbody length
bod

rb initial afterbody radius
b1

and F and G are the cubic blending functions defined by Eq. (37). The

particular values chosen for the afterbody parameters are

r 0.75 , dd 2 .5 tan6 =0.50

which produce a fairly full profile with a tail half angle of 26.6 degrees.

Other parameters in the test problem are given in Table 3.

NI N2 N3 N4 JMAX KMAX DIVL DTL DOB

10 20 5 10 31 3 0.75 0.5 1.0

RTIP TAU SX0 SXI SX2 SX3 SYO SYl SYO

1.0 0.2 5.0 3.0 2.0 2.0 2.0 1.0 2.0

Table 3. Parameters in 3-D Test Problem.

Only one intermediate surface was generated in the test problem to serve as an

illustration of the general features of these surfaces.

..........
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* The meridian plane view of the test problem geometry, computational domain

and intermediate surface is shown in Fig. 17. Two views of each r = constant

surface are presented, the first from below and in front and the second from

the side. These views are shown in Figs. 18 through 23. A composite side

view showing the position of each surface relative to the other is presented

in Fig. 24.

In a grid stacking procedure each grid on a surface is generated somewhat

independently of the other. The dependence is indirect through the geometry

and not direct as in the case of partial differential equation grid generation

schemes or fully 3-D algebraic schemes. Thus for 3-D grids generated by

stacking one of the primary concerns is with smoothness in the stacking

direction. In the present method, the only reason that the grid changes in

the x - 6 plane from surface to surface is that the airfoil image is

changing. As r increases, the airfoil image, according to Eq. (17), is

shrinking in terms of maximum thickness approximately as 1/rS. Although the

total arc length of the airfoil image is also shrinking slightly as r

increases, the clustering parameters are fixed and hence the airfoil point

distribution on each surface is always in the same proportion. As the

airfoil image grows thinner, point K slowly moves toward the leading edge.

The trace of point K in the meridian plane is shown in Fig. 17. On the other

hand, the distribution of points on the stagnation line remains the same

independent of r. Of course close to the surface of the afterbody in the

vicinity of the tail the grid shrinks rapidly to reflect the pointed nature

of the tail and the axis singularity. This feature would exist whether or

0
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not stacking were used. Thus because the airfoil image is varying slowly

as r increases and th, oints on the image remain in the same proportion of

arc length, the present method can be expected to produce a grid of high

quality in the stacking direction.

One aspect of the current strategy of point placement on boundaries is not

entirely satisfactory. Although the circular arc method of point placement

in the hinge plane works well on the lower symmetry line, it leaves something

to be desired on the IVL. Coupled with the singularity at the corner

(point C) and the orthogonality requirement at boundaries, clustering at

point K was found to be necessary to achieve a reasonable point spacing

near point C on the IVL. This clustering would probably not be necessary

if a different strategy were used to locate the points on the IVL. One

possibility would be to space them in the x - 0 plane in the same proportion

of arc length as along the airfoil between the leading edge and point K.

Downstream of point K the strategy would remain as before.

.0.

S o
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Appndi I.Conformal Mapping Relations

(1) Transformation from x -0to - n plane.

=sinh {~ [a + (02  4q)1/ 12 (AI.1)

=Cos
1( (AI.2)

cosh

where

P 2+ -2q (AI.3)

- x -

p =e cos 0-1(AI.4)

- I

q =e~ sin 0 (AI.5)

and

= + (AI.6)

= - ii)(AI.7)

where

2

U 2 2 .(AI.8)

I'TI
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(2) Transformation from -nto x -0plane.

= 1P + P) 1/2 (AI.9)

2 2

where

( 2 + 4q2)1/2AI12

1 
-2 )

q w(Al. 13)

and

x = n(cosh -cos n) (AI.14)

0- cs( cosh cos j(A15
cosh -cos i

In the preceding relations is computed from

[4 exp(-a)
=sinh

1  x(a (AI.16)

where

a 4(ds dvL * (AI. 17)
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In the determination of ds, the same procedure is followed here as in

Ref. 6 where near the airfoil leading edge in the x - e plane the most nearly

orthogonal grid is sought. Such a system is obtained when the leading edge

maps into anr = constant line. The resulting expression for dS is found to

be

ds =+2 (AI.18)4 1+ 2p 0

where p0 is the radius of curvature of the airfoil leading edge in the x - 0

plane. Equation (AI.18) differs from its counterpart in Ref. 6, Eq. (100),

because a uniform stretching of x and 0 is used here.

0.

0-
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Appendix I1. Evaluation of Boundary Derivatives for Transfinite Interpolation

Normalized coordinates g and n are determined in the hinge plane in

terms of the normalized arc length along the south and east boundaries

(lines E-K-F-I and B-E in Fig. 10). If s1 and s2 denote running arc length

along the south and east boundaries, then

q(sl)"i

s E-I

SB E  (AI1.2)

where the running arc lengths are determined using the chord approximation.

If t1 and t2 are unit tangent vectors along the and ni coordinate curves,

then

+ asl
- 1+

r = tI  (AII.3)
t

and

as
+ s2 +
rn  -t 2  (AII.4)

Under the assumption that extended orthogonality holds at the corners the

cross-derivative is given by

as as
+ 1 -Ct
r. 2 9. 2  C I ) (AII.5)

En 3& 3n 2 ...
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where C and C2 are the curvatures of the and n coordinate curves

respectively.

The south-north and west-east boundaries are assumed always to be oriented

as shown in Fig. 10. Thus on the south boundary we take vS = Vs (u) from

which the unit tangent vector follows as

t= tlueu + t 1ve (AII.6)

where

1t (1+ I2 /2 ' (AIl.7)

(I+ US2

vS
t = 2I/2 " (AII.8)

( + 
2 ) 1

and e and e are unit vectors in the u and v directions respectively. Then
u v

the unit normal vector to the south boundary may be written as

t tlveu +t2uev (AII.9)

And finally, the curvature on the south boundary is

'I

SC 2 / (AII.1O)

+ vs)

On the east boundary we take uE u E(v) and hence the unit tangent vector

is

................................o,
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t2 t2u eu +t2v ev (AII.11)

where

tu u E (AII.12)
(u + U12 1/

IE

t~v + 1 T71/ (AII.13)

Then the unit normal vector is

ti t e -t e (I.4
I 2v u 2u v '(I.

and the curvature C2 is

29

UE
2 C (AII.15)

(i+ u E)

On the south boundary, from Eq. (AII.1)

SET (AII.16)

The derivative Ds,/D; on the south boundarv is known only at the end points

and hence must he determined between points E and I hy interpolation.

Fo1Lowia5g Ref. 5, we use a cubic blending function approximation, viz.
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as' as) 2 (~ as 2) F(Z) + (-1.) G(&) (32s2) H(e) (AII.17)
3; 3 TI S' anT SE 3 a T SW 3nSE

From the extended orthogonality relations, the cross-derivative is found to

be

a~as 2 ~ias 2~(All. 18)
-A A 2

on the east boundary, from Eq. (AII.2)

a2) s- (All. 19)

* an E

and analogous to Eq. (AII.17), the cubic blending function formula for

as I/aF is

as)=(as) E(n) + (as) F(;) + (a~s) G(;) + (L~s) H(,) . (AII.20)
E a~SE 3& NE anac SE DOE~ NE

* where from extended orthogonality

L- (ah=- s (AII.2 I
3n 3 3E an

Lo maintain a reasonable spacing of =constant grid lines in the

physical olane, especially near the airfoil surface, the normal spacing

* in the x - 3 plane on the stagnation and outflow lines (east and west

boundaries in the hinge plane) is taken to be the sane. As a result (nTj

does riot obey a relation similar to Eq. (AII.2) and hence a,/Ti mutst be



... -r... . - i .. .. . .. . . : . o . ., : =, ,.., . .. ._ . . . . 4 , ... .., ' - "-' , "

64 12 April 1985
GHH: lhz

determined numerically point-by-point. As for as 1 /3Z, an interpolation

relation similar to Eq. (AII.20) is used with appropriate changes in

notation.

On the north boundary the points are positioned in the hinge plane by

using a circular arc approximation similar to that used in locating point K.

The iteration formula for UN9 similar to Eqs. (28) and (29) is

(uN)(n+l) (uN)(n) + (AuN)(n) (AII.22)fuN i  + AN i

where

J u - UN (vs -v N tan[2 (s + 'N (n)
(AuN)i 1+ tan N tan[-L (0 + N)](AII.23)

The derivative as/ 1/ must be determined numerically at each point and

as /3; is computed from an interpolation formula analogous to Eq. (AII.17).
2

In the determination of the various interpolated values of u and v and

their derivatives required in the foregoing equations, Lagrange cubic

interpolation is used. The derivative expressions are determined by

differentiation of the Lagrange polynomials.

A

-n., .
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